Prime divisors of palindromes

نویسندگان

  • William D. Banks
  • Igor E. Shparlinski
چکیده

Abstract In this paper, we study some divisibility properties of palindromic numbers in a fixed base g ≥ 2. In particular, if PL denotes the set of palindromes with precisely L digits, we show that for any sufficiently large value of L there exists a palindrome n ∈ PL with at least (log log n)1+o(1) distinct prime divisors, and there exists a palindrome n ∈ PL with a prime factor of size at least (log n) 2+o(1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

σ-sporadic prime ideals and superficial elements

Let $A$ be a Noetherian ring, $I$ be an ideal of $A$ and $sigma$ be a semi-prime operation, different from the identity map on the set of all ideals of $A$. Results of Essan proved that the sets of associated prime ideals of $sigma(I^n)$, which denoted by $Ass(A/sigma(I^n))$, stabilize to $A_{sigma}(I)$. We give some properties of the sets $S^{sigma}_{n}(I)=Ass(A/sigma(I^n))setminus A_{sigma}(I...

متن کامل

On Prime Divisors of Binomial Coefficients

This paper, using computational and theoretical methods, deals with prime divisors of binomial coefficients: Geometric distribution and number of distinct prime divisors are studied. We give a numerical result on a conjecture by Erdôs on square divisors of binomial coefficients.

متن کامل

Recognition of the group $G_2(5)$ by the prime graph

Let $G$ be a finite group. The prime graph of $G$ is a graph $Gamma(G)$ with vertex set $pi(G)$, the set of all prime divisors of $|G|$, and two distinct vertices $p$ and $q$ are adjacent by an edge if $G$ has an element of order $pq$. In this paper we prove that if $Gamma(G)=Gamma(G_2(5))$, then $G$ has a normal subgroup $N$ such that $pi(N)subseteq{2,3,5}$ and $G/Nequiv G_2(5)$.

متن کامل

Almost All Palindromes Are Composite

We study the distribution of palindromic numbers (with respect to a fixed base g ≥ 2) over certain congruence classes, and we derive a nontrivial upper bound for the number of prime palindromes n ≤ x as x → ∞. Our results show that almost all palindromes in a given base are composite. ∗MSC Numbers: 11A63, 11L07, 11N69 †Corresponding author 1

متن کامل

M ay 2 00 4 Almost All Palindromes Are Composite ∗

We study the distribution of palindromic numbers (with respect to a fixed base g ≥ 2) over certain congruence classes, and we derive a nontrivial upper bound for the number of prime palindromes n ≤ x as x → ∞. Our results show that almost all palindromes in a given base are composite.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Periodica Mathematica Hungarica

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2005